Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy.
نویسندگان
چکیده
Plasmonic systems based on metal nanoparticles on a metal film have generated great interest for surface-enhanced Raman spectroscopy (SERS) chemical sensors. In this study, we describe the fabrication of ultrasensitive SERS substrates based on high-density gold nanostar assemblies on silver films with tailored surface plasmons, where multiple field enhancements from particle-film and interparticle plasmon couplings and lightening rod effects of sharp tips of nanostars contribute to the enormous Raman enhancements. We show that the interplay between interparticle and particle-film plasmon couplings of high-density gold nanostars (GNSs) on metal and dielectric films as a function of interparticle separation can be tailored to provide maximum SERS effects. We observe that the SERS enhancement factor (EF) of GNSs on a metal film as a function of interparticle separation follows a broken power law function, where the EF increases with the interparticle separation for the strong interparticle coupling range below an interparticle separation of ~0.8 times the GNS size, but decreases for the weak interparticle coupling range (for an interparticle separation of >0.8 times the GNS size). Finally, we demonstrate the use of tailored plasmonic substrates as ultrasensitive SERS chemical sensors with an attomole level of detection capability of 2,4-dinitrotoluene, a model compound of nitroaromatic explosives.
منابع مشابه
Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کاملNear-field Optical Excitation and Detection of Surface Plasmons
By definition surface plasmons are the quanta of surface-charge-density oscillations, but the same terminology is commonly used for collective oscillations in the electron density at the surface of a metal. Because the surface charge oscillations are intimately coupled to electromagnetic fields, surface plasmons are polaritons. In the past, surface plasmons have attracted considerable attention...
متن کاملSilver Nanostar Patterned Substrate for Label-Free Characterization of Breast Cancer Cells based on Surface-Enhanced Raman Spectroscopy
Characterization of cancer cells is important in case of personalized cancer therapy. Cells can be characterized based on their surface marker expression level using fluorescence or surface-enhanced Raman spectroscopy (SERS) method, but in both cases its needed additional labeling with fluorescent or Raman dyes, those may cause cellular cytotoxicity. In this study, we report silver (Ag) nanosta...
متن کاملGold nanoparticles on polarizable surfaces as Raman scattering antennas.
Surface plasmons supported by metal nanoparticles are perturbed by coupling to a surface that is polarizable. Coupling results in enhancement of near fields and may increase the scattering efficiency of radiative modes. In this study, we investigate the Rayleigh and Raman scattering properties of gold nanoparticles functionalized with cyanine deposited on silicon and quartz wafers and on gold t...
متن کاملSurface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications
Surface Enhanced Raman Spectroscopy presents a rapid, non-destructive method to identify chemical and biological samples with up to single molecule sensitivity. Since its discovery in 1974, the technique has become an intense field of interdisciplinary research, typically generating >2000 publications per year since 2011. The technique relies on the localised surface plasmon resonance phenomeno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2014